Do Transformers Dream of Inference, or Can Pretrained Generative Models Learn Implicit Inferential Rules?

Zhengzhong Liang and Mihai Surdeanu
Computer Science Department, The University of Arizona
1040 4th St, Tucson, AZ 85721, USA
{zhengzhongliang, msurdeanu}@email.arizona.edu

Abstract

Large pretrained language models (LM) have been used successfully for multi-hop question answering. However, most of these directions are not interpretable, as they do not make the inference hops necessary to explain a candidate answer explicitly. In this work, we investigate the capability of a state-of-the-art transformer LM to generate explicit inference hops, i.e., to infer a new statement necessary to answer a question given some premise input statements. Our analysis shows that such LMs can generate new statements for some simple inference types, but performance remains poor for complex, real-world inference types such as those that require monotonicity, composition, and commonsense knowledge.

1 Introduction

The emergence of large pretrained language models (LM) (Devlin et al., 2019; Liu et al., 2019) yielded significant progress in question answering (QA), including complex QA tasks that require multi-hop reasoning (Banerjee et al., 2019; Asai et al., 2019; Yadav et al., 2019). Most of these state-of-the-art (SOTA) approaches address multi-hop reasoning tasks in a discriminative manner: they take the question, the candidate answer, and all the context available as the input, and produce a single score indicating the likelihood of the answer as justified by the provided context (an example is shown in Figure 1). However, why that context actually justifies the answer remains unclear to the human end user of the QA system.

In contrast, most of us are likely to answer the question in Figure 1 by building a reasoning chain from the given facts. For example, such a possible chain starts by first combining “metal is a thermal conductor” and “steel is made of metal” to yield “steel is a thermal conductor”. Next, combining “steel is a thermal conductor” and “heat travels through a thermal conductor” yields “heat travels through steel”. And, finally, “heat travels through steel” supports the correct explanation that “a steel spoon in a cafeteria would let the most heat travel through.” Generating such reasoning chains can be crucial for the adoption of natural language processing applications such as QA in critical domains such as medical or law.

Motivated by this, in this work we investigate whether a state-of-the-art (SOTA) transformer-based language model is able to generate a valid intermediate statement given two premise statements on a natural language QA dataset, which is fundamental to generating the reasoning chains. Our results show that although the SOTA model investigated can handle some types of inferences well, there remain multiple types of inferences where the LM fails.¹

¹The code and data for our analysis can be found at https://github.com/clulab/releases/tree/master/emnlp2020-generative-nli.
Table 1: Statistics of the quality of the generated T5 state-
ments on the dev set of QASC. The same randomly sampled
87 examples are manually evaluated for their quality, in both
the “without hint” and “with hint” configurations.

<table>
<thead>
<tr>
<th>Category</th>
<th>Without Hint</th>
<th>With Hint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfect</td>
<td>31/87</td>
<td>43/87</td>
</tr>
<tr>
<td>Acceptable</td>
<td>11/87</td>
<td>13/87</td>
</tr>
<tr>
<td>Unacceptable</td>
<td>45/87</td>
<td>31/87</td>
</tr>
</tbody>
</table>

2 Related Work

Recently several works have investigated whether
deep learning (DL) language models (LM) are able
to learn and use the explicit and implicit rules in
natural language. (Sinha et al., 2019) build a syn-
thetic dataset containing the relationships between
people; their language model needs to predict the
unstated relationships between people. The prob-
lem can be summarized as: given that “Mike is the
child of Kate and Kate is the child of Tom”, the
model needs to predict “Tom is the grandparent
of Mike”, by learning the implicit rule: “If X is
the child of Y and Y is the child of Z, then Z is
the grandparent of X”. It has been shown that the
transformer networks perform well on this task.

Other works have analyzed whether DL lan-
guage models are able to leverage explicit rules.
(Clark et al., 2020) generates a synthetic dataset
consisting of facts and rules. The problems can be
summarized as: given the facts such as “X is red
and “X is big”, as well as rules such as “If X is red
and big, then X is strong”, the LM trained on this
data must be able to judge whether “X is strong” is
true. They demonstrate that transformers can fulfill
this task well, and are able to generalize to unseen
lexicons.

However, all existing works investigate this prob-
lem in a discriminative manner: either a single
score, a single token, or a single choice is produced
as the output. In contrast, we conduct our work in
a generative manner: the LM needs to generate
a whole natural language statement as the output.
We believe this task will eventually give the LM
the ability to generate clear and complete explana-
tions, which are necessary in multi-hop reasoning
problems. Further, we investigate the capability of
transformers to generate inferential statements on
a complex, real-world task in the science domain,
which relies on much sparser data than other tasks
previously investigated.

3 Approach

3.1 Problem Formulation

In this paper, we concentrate on a single-hop in-
ference problem. That is, given the statements
\(S_1(A, B) \) and \(S_2(B, C) \), the model needs to gen-
erate the valid and reasonable statement \(S_3(A, C) \).
Unlike reasoning tasks on structured knowledge
bases or ConceptNet where \(A, B, C \) are entities,
here \(A, B \) and \(C \) can be any text in natural lan-
guage: they can be words, phrases, or clauses.

We used the QASC dataset (Khot et al., 2020) for
this task. QASC contains approximately 10,000
questions in the science domain, where each an-
swer is associated with two supporting facts (fact 1
and fact 2). These two supporting facts have tokens
in common, which is necessary for our inference
task that requires overlap between facts (through
B). Importantly, for each answer QASC provides a
combined fact that explains the answer, and which
is directly inferred from the two supporting facts.
The first two columns in Tables 2, 3, and 4 show
a few examples of the supporting facts and the re-
sulting combined fact. The forms of the combined
facts can be very diverse due to the annotation pro-
cess of QASC, where each annotator is first given
fact 1, then the annotator needs to find an arbitrary
fact 2 that has overlaps with the fact 1, and com-
poses the combined fact, without other restrictions
(Khot et al., 2020). The task we investigate here
is whether transformer-based LMs can infer the
combined fact when provided with the two initial
facts.

3.2 Method

We use the pre-trained Google T5 small model (Raf-
ffel et al., 2020) published by huggingface (Wolf
et al., 2019), and fine-tune it on the QASC dataset.3
We explore two types of input format:

- **fact 1 + fact 2 → combined fact**: In this setting,
 T5 takes the two facts as input to generate the com-
 bined fact. The T5 input format is “substitution
 statement 1: [fact 1] statement 2: [fact 2]”, where
 “substitution”, “statement 1:” and “statement 2:”
 are user-defined keywords for the task.

2Note that the two supporting facts and the gold combined
fact of each question in QASC are annotated by the creators
of the QASC dataset, not by the authors of this paper.

3We used the Adam optimizer with a learning rate of 1e-4,
as recommended in the tutorial. The training stops when the
evaluation loss starts to increase; we allowed a maximum of
10 epochs of training.
During our experiments, we noticed that sometimes multiple valid statements could be inferred from fact 1 and fact 2, which tended to confuse the LM. With this issue, we added lexical hints to the model input, on what tokens would be best to be included in the generated statement. The terms in the hint are generated as \((Q \cup A) \cap (F_1 \cup F_2)\), where \(Q\) is the set of unique terms in the question, \(A\) is the set of unique terms in the answer, \(F_1\) and \(F_2\) are the sets of unique terms in fact 1 and fact 2. This is inspired by the fact that each question in QASC is derived from the gold combined fact, so that even when multiple valid statements may be generated from fact 1 and fact 2, paying extra attention on the terms in the question and the correct answer is likely to force the model to make predictions related to the gold combined fact.

3.3 Evaluation Metric

For each configuration, we manually evaluated 10 generated statements against the corresponding gold combined fact on the dev set. All generations are categorized into three classes.

Perfect: The generated statement is (1) exactly the same as the gold combined fact, or (2) semantically the same as the gold combined fact but uses a different expression.

4E.g., for the first and second row in Table 3, “one-celled animals make humans sick” is a valid generation, but not perfect w.r.t. the target.

5Thus, the text containing the lexical hints is simply a bag of words, rather than grammatical correct text.

Table 2: Output of T5 on QASC in the “without hint” configuration.

<table>
<thead>
<tr>
<th>Input</th>
<th>Target</th>
<th>Prediction</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>substitution statement 1: if weather is stormy then there is a greater chance of rain. substitution statement 2: rain is also known as precipitation.</td>
<td>if weather is stormy then there is a greater chance of precipitation.</td>
<td>if weather is stormy then there is a greater chance of precipitation.</td>
<td>Perfect, exactly the same</td>
</tr>
<tr>
<td>substitution statement 1: lightning can cause a forest fire. substitution statement 2: forest fires are examples of wildfires.</td>
<td>lightning can cause wildfires.</td>
<td></td>
<td>Perfect, semantically the same</td>
</tr>
<tr>
<td>substitution statement 1: whisksers are used for feeling by animals. substitution statement 2: whiskers are the stiff hairs on the dog’s face.</td>
<td>stiff hairs on the face are used for feeling by animals.</td>
<td>stiff hairs on the dog’s face are used for feeling by animals.</td>
<td>Acceptable</td>
</tr>
<tr>
<td>substitution statement 1: lymph is a fluid that leaks out of capillaries into spaces between cells. substitution statement 2: bacteria invade lymph nodes, which swell, creating the buboes. substitution statement 1: absorption of nutrients occurs mainly in the small intestine. substitution statement 2: diarrhea reduces the absorption of all nutrients.</td>
<td>bacteria can swell.</td>
<td>diarrhea reduces the absorption of nutrients.</td>
<td>Unacceptable, unreasonable or contradicting information</td>
</tr>
</tbody>
</table>

Table 3: Comparison of T5 output in the “without hint” and “with hint” configurations on QASC.

<table>
<thead>
<tr>
<th>Input</th>
<th>Target</th>
<th>Prediction</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>substitution statement 1: protozoa make humans sick when they become human parasites. substitution statement 2: exhibit one-celled animals are called protozoa.</td>
<td>one-celled animals make humans sick when they become parasites.</td>
<td>one-celled animals make humans sick.</td>
<td>w/o hint</td>
</tr>
<tr>
<td>substitution statement 1: protozoa make humans sick when they become human parasites. substitution statement 2: exhibit one-celled animals are called protozoa. hint: animals when become one-celled humans make parasites they sick.</td>
<td>one-celled animals make humans sick when they become parasites.</td>
<td>one-celled animals make humans sick when they become parasites.</td>
<td>w/o hint</td>
</tr>
<tr>
<td>substitution statement 1: mutualism is a symbiotic relationship in which both species benefit. substitution statement 2: domestication of animals is an example of a symbiotic relationship.</td>
<td>domestication of animals is an example of mutualism.</td>
<td>domestication of animals is an example of mutualism.</td>
<td>w/o hint</td>
</tr>
<tr>
<td>substitution statement 1: mutualism is a symbiotic relationship in which both species benefit. substitution statement 2: domestication of animals is an example of a symbiotic relationship. hint: is animals mutualism of domestication example an.</td>
<td>domestication of animals is an example of mutualism.</td>
<td>mutualism is an example of domestication of animals.</td>
<td>w/ hint, statement harmed</td>
</tr>
</tbody>
</table>

613 data points had issues in the raw data, and were removed, leaving the actual number of data points analyzed as 87.
Table 4: Output of T5 categorized by the types of the inference (w/ hint).

<table>
<thead>
<tr>
<th>Input</th>
<th>Target</th>
<th>Prediction</th>
<th>Question Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substitution statement 1: skin color is a polygenic trait. Statement 2: polygenic traits are the result of the interaction of several genes. Hint: is genes of the result several skin color interaction.</td>
<td>Skin color is the result of the interaction of several genes.</td>
<td>Skin color is the result of the interaction of several genes.</td>
<td>Instantiation</td>
</tr>
<tr>
<td>Substitution statement 1: if weather is stormy then there is a greater chance of rain. Statement 2: rain is also known as precipitation. Hint: stormy is greater weather there of a chance precipitation.</td>
<td>If weather is stormy then there is a greater chance of precipitation.</td>
<td>If weather is stormy then there is a greater chance of precipitation.</td>
<td>Equivalence</td>
</tr>
<tr>
<td>Substitution statement 1: all aquatic animals have hydrostatic skeletons. Statement 2: aquatic animals are aquatic hydrostatic.</td>
<td>All aquatic animals have hydrostatic skeletons.</td>
<td>Some aquatic animals have hydrostatic skeletons.</td>
<td>Monotonicity with quantifier</td>
</tr>
<tr>
<td>Substitution statement 1: absorption of nutrients occurs mainly in the small intestine. Statement 2: diarrhea reduces the absorption of all nutrients. Hint: occurs small mainly the diarrhea reduces in intestine</td>
<td>Diarrhea reduces function that occurs mainly in the small intestine.</td>
<td>Diarrhea reduces the amount of food that occurs mainly in the small intestine.</td>
<td>Composition and summarization</td>
</tr>
<tr>
<td>Substitution statement 1: kidney failure may be treated with dialysis. Statement 2: kidney failure is a death sentence. Hint: death dialysis.</td>
<td>A lack of dialysis may lead to death.</td>
<td>Death can be treated with dialysis.</td>
<td>Need to rephrase to make the new statement reasonable</td>
</tr>
</tbody>
</table>

Acceptable: The generated statement is semantically valid, but its meaning is slightly different from the gold combined fact.

Unacceptable: The generated statement (1) contains contradicting information, or (2) has severe grammatically issues, or (3) is missing essential content from the gold combined fact (e.g., contains information from only fact 1 or only fact 2).

4 Results

Table 1 shows the overall statistics gathered by our analysis. All in all, our analysis shows that this inferential task is far from solved, with most of the inferred statements being not perfect. In particular, for the w/o hints configuration, less than half of the generated statements are perfect. Adding lexical hints to the input boosts the generation quality in general, but leaves 51% of inferences as not perfect. A detailed analysis of the generated statements highlights that T5 performs well in certain situations, and not so in others. We categorize below these situations, discuss some possible solutions, and leave a more systematic analysis of the reason why the model fails on some problems to a future study.

Below “well learned” means most of the predictions on that type of generations are evaluated as “perfect” and “not well learned” means most of the predictions are evaluated as “unacceptable” by the criteria mentioned in 3.3.

Inference types well learned:

Instantiation Here the input statements are $S_1(A, B)$ and $IsA(B, C)$, i.e., C is an instantiation of a more general concept B. The target output is $S_1(A, C)$ (Table 4).

Equivalence Here the input statements are $S_1(A, B)$ and $Equ(B, C)$, i.e., B is equivalent to C. The target output is $S_1(A, C)$ (Table 4).

Inference types not well learned:

Multiple possible statements to generate When the input statements are long and complex, there might be multiple valid statements that could be generated from the input (discussed in 3.2). In this case T5 tends to be confused. Adding lexical hints can relieve this problem to some extent by forcing the model to pay extra attention to certain areas in the input, but problems remain. First, even when adding the lexical hints, some generations are still not reasonable (Table 3). Second, accurately identifying the important fractions to pay attention to is itself a non-trivial problem. We believe this is an exciting area for future research. For example, some specialized architectures such as the pointer generator network (See et al., 2017) might be capable to learn what parts should be copied or ignored.

Composition and summarization As shown in the third to last row of Table 4, the new statement needs the composition of statement 1 and 2, and some summarization is needed (i.e., “absorption of nutrients” → “function”).

Dealing with quantifiers in natural language As shown in the second to last row of Table 4, the new
statement needs complex monotonicity reasoning and the understanding of quantifiers.

Generating statements that comply with commonsense knowledge In several examples, the model generates statements that are grammatically correct but unreasonable regarding commonsense knowledge. In particular, many of these inferences require commonsense knowledge to generate new text and rephrasing to make the new statement reasonable. For example, in the last row of Table 4, “death can be treated with dialysis” is grammatically correct but unreasonable.

There might be multiple reasons why some types of generations are not well learned. For instance, it could be because the biases learned by T5 in the pre-training stage impede it from learning meaningful patterns by fine-tuning on a downstream task with relatively few training samples (e.g., the QASC dataset used in this paper has only about 8,000 training examples). Alternatively, it is possible that the patterns to be learned in this downstream task are too complex to be learned from the small training data available. We leave a more systematic analysis in this direction to future studies.

5 Conclusion

In this work we investigate how well a state-of-the-art transformer language model can generate a valid statement inferred from two given statements. We manually evaluated two fine-tuned T5 models (Raffel et al., 2020) with slightly different inputs (i.e., with and without contextual information) on the Question Answering via Sentence Composition dataset (Khot et al., 2020). Our analysis indicates that the two models can generate good-quality statements, when the inference relies solely on instantiation or equivalence. However, the models perform poorly on more complex inferences such as: (a) multiple valid statements can be generated given the premises, (b) inference that requires non-trivial reasoning of monotonicity (especially with quantifiers in natural language), (c) inference that needs composition and summarization, and (d) statements that require rephrasing based on background commonsense knowledge.

References

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle Pineau, and William L. Hamilton. 2019. CLUTRR:
